题目内容
18.(1)求证:△BCF≌△BA1D;
(2)当∠C=40°时,请你证明四边形A1BCE是菱形.
分析 (1)根据旋转的性质,得出A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,再根据ASA即可判定△BCF≌△BA1D;
(2)根据∠C=40°,△ABC是等腰三角形,即可得出∠A=∠C1=∠C=40°,进而得到∠C1=∠CBF,∠A=∠A1BD,由此可判定A1E∥BC,A1B∥CE,进而得到四边形A1BCE是平行四边形,最后根据A1B=BC,即可判定四边形A1BCE是菱形.
解答
解:(1)∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵将等腰△ABC绕顶点B逆时针方向旋转40度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
在△BCF与△BA1D中,
$\left\{\begin{array}{l}{∠{A}_{1}=∠C}\\{{A}_{1}B=BC}\\{∠{A}_{1}BD=∠CBF}\end{array}\right.$,
∴△BCF≌△BA1D(ASA);
(2)∵∠C=40°,△ABC是等腰三角形,
∴∠A=∠C1=∠C=40°,
∴∠C1=∠CBF=40°,∠A=∠A1BD=40°,
∴A1E∥BC,A1B∥CE,
∴四边形A1BCE是平行四边形,
∵A1B=BC,
∴四边形A1BCE是菱形.
点评 本题主要考查了旋转的性质,等腰三角形的性质,全等三角形的判定以及菱形的判定的运用,解题时注意:一组邻边相等的平行四边形是菱形.
练习册系列答案
相关题目
10.下列计算正确的是( )
| A. | 2×3=0 | B. | 3-1=-3 | C. | x÷x=x | D. | (-a)2=a2 |