题目内容

18.如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1B1C1,AB与A1C1相交于点D,A1C1、BC1与AC分别交于点E、F.
(1)求证:△BCF≌△BA1D;
(2)当∠C=40°时,请你证明四边形A1BCE是菱形.

分析 (1)根据旋转的性质,得出A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,再根据ASA即可判定△BCF≌△BA1D;
(2)根据∠C=40°,△ABC是等腰三角形,即可得出∠A=∠C1=∠C=40°,进而得到∠C1=∠CBF,∠A=∠A1BD,由此可判定A1E∥BC,A1B∥CE,进而得到四边形A1BCE是平行四边形,最后根据A1B=BC,即可判定四边形A1BCE是菱形.

解答 解:(1)∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵将等腰△ABC绕顶点B逆时针方向旋转40度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1
在△BCF与△BA1D中,
$\left\{\begin{array}{l}{∠{A}_{1}=∠C}\\{{A}_{1}B=BC}\\{∠{A}_{1}BD=∠CBF}\end{array}\right.$,
∴△BCF≌△BA1D(ASA);

(2)∵∠C=40°,△ABC是等腰三角形,
∴∠A=∠C1=∠C=40°,
∴∠C1=∠CBF=40°,∠A=∠A1BD=40°,
∴A1E∥BC,A1B∥CE,
∴四边形A1BCE是平行四边形,
∵A1B=BC,
∴四边形A1BCE是菱形.

点评 本题主要考查了旋转的性质,等腰三角形的性质,全等三角形的判定以及菱形的判定的运用,解题时注意:一组邻边相等的平行四边形是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网