题目内容


如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.

(1)求证:△ABM∽△EFA;

(2)若AB=12,BM=5,求DE的长.


【考点】相似三角形的判定与性质;正方形的性质.

【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;

(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.

【解答】(1)证明:∵四边形ABCD是正方形,

∴AB=AD,∠B=90°,AD∥BC,

∴∠AMB=∠EAF,

又∵EF⊥AM,

∴∠AFE=90°,

∴∠B=∠AFE,

∴△ABM∽△EFA;

(2)解:∵∠B=90°,AB=12,BM=5,

∴AM==13,AD=12,

∵F是AM的中点,

∴AF=AM=6.5,

∵△ABM∽△EFA,

∴AE=16.9,

∴DE=AE﹣AD=4.9.

【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网