题目内容
8.求|x-1|+|x-2|+|x-3|+…+|x-1997|的最小值.分析 观察已知条件可以发现,|x-a|表示x到a的距离.要是题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.
解答 解:由已知条件可知,|x-a|表示x到a的距离,只有当x到1的距离等于x到1997的距离时,式子取得最小值.
∴当x=$\frac{1+1997}{2}$=999时,式子取得最小值,
此时,|x-1|+|x-2|+|x-3|+…+|x-1997|=|999-1|+|999-2|+|999-3|+…+|999-998|+|999-999|+|999-1000|+…|999-1996|+|999-1997|
=998+997+996+…+1+0+1+2+…+997+998
=2×(1+2+3…+997+998)
=2×$\frac{998+1}{2}×998$
=998×999
=997002.
点评 本题主要考查了绝对值的性质及数形结合求最值问题,利用已知得出x=999时,|x-1|+|x-2|+|x-3|+…+|x-1997|有最小值是解答此题的关键.
练习册系列答案
相关题目
19.下列多项式中,分解因式后含有因式(a+3)的是( )
| A. | a2-6a+9 | B. | a2+2a-3 | C. | a2-6 | D. | a2-3a |
3.
某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)
| 月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 价格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)