题目内容

如图,抛物线经过A(﹣1,0),B(5,0),C(0, )三点.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

(1)y=x2﹣2x﹣;(2)P(2,﹣);(3)点N的坐标为(4,﹣),(2+, )或(2﹣, ). 【解析】试题分析:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c...
练习册系列答案
相关题目

如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.

14. 【解析】 试题分析:∵D、E分别AB、BC的中点,∴AD=AB,DE=AC.同理AF=AC,EF=AB.∴l四边形ADEF=AD+DE+EF+AF=(AB+AC+AB+AC)=AB+AC=14cm.

如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为(  )

A. 4S1 B. 4S2 C. 4S2+S3 D. 3S1+4S3

A 【解析】试题分析:设等腰直角三角形的直角边长为a,中间小正方形的边长为b,则另两个直角三角形的边长分别为a-b,a+b,所以S1=,S2=,S3=,平行四边形的面积=2S1+2S2+S3=++=2=4S1,故答案选A.

如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )

A.4 B.8 C.2 D.4

D. 【解析】 试题分析:在RT△ABF中,∠AFB=90°,AD=DB,DF=4,利用直角三角形斜边中线性质可得AB=2DF=8,再由AD=DB,AE=EC,可得DE∥BC,∠ADE=∠ABF=30°,所以AF=AB=4,由勾股定理可得BF=4.故选D.

一个多边形的外角和与它的内角和相等,则多边形是( )

A. 三角形 B. 四边形 C. 五边形 D. 六边形

B 【解析】多边形外角和为,内角和为, , , 所以该多边形为四边形.

平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);

(1)求抛物线的表达式;

(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.

(1)y=2x2﹣8x+6;(2)向下平移6个单位. 【解析】试题分析:(1)利用待定系数法直接求出抛物线的解析式; (2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k. 试题解析:【解析】 (1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x...

如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是(  )

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

D 【解析】试题分析:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧,∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y= =0,∴a﹣b+c=0,即a=b﹣c...

如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_____.

﹣1<x<3 【解析】试题分析:根据二次函数的性质可得:二次函数与x轴的另一个交点坐标为(-1,0),则根据二次函数的图像可得:不等式的解集为.

如图,有一抛物线拱桥,当水位线在AB位置时,拱桥顶离水面2m,水面宽4m,水面下降1m后,水面宽为( )

A. 5m B. 6m C. m D. 2m

D 【解析】试题分析:建立如图所示的坐标系,则点A的坐标为(-2,-2),设函数关系式为,则-2=4a,所以a= -,所以,当y=-3时, ,所以水面宽为m,故选:D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网