题目内容
若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
A.矩形
B.菱形
C.对角线互相垂直的四边形
D.对角线相等的四边形
(本题满分10分)如图,一块矩形场地ABCD,现测得边长AB与AD之比为,DE⊥AC于点E,BF⊥AC于点F,连接BE,DF.现计划在四边形DEBF区域内种植花草.
(1)求证:AE=EF=CF.
(2)求四边形DEBF与矩形ABCD的面积之比.
如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=55°,则∠AED′等于( )
A.55° B.70° C.60° D.65°
已知、为有理数,、分别表示的整数部分和小数部分,且,则 .
如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒lcm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ有多少次平行于AB?( )
A.1 B.2 C.3 D.4
(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)(4分)求每台A型电脑和B型电脑的销售利润;
(2)(4分)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)(4分)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
计算(每小题5分,共10分)
(1);
(2).
(本题12分)已知直线AB分别交、轴于A(4,0)、B两点,C(-4,)为直线AB上且在第二象限内一点,若△COA的面积为8,
(1)如图1,求C点坐标;
(2)如图2,点M为第二象限内一点,CM⊥OM于M,CN⊥轴于N,连MN,求证:的值;
(3)如图3,过C作CN⊥轴于N,G为第一象限内一点,且∠NGO=45°,试探究GC2、GN2与GO2之间的数量关系并说明理由.
如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )