题目内容

12.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.
(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;
(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.

分析 (1)①根据等腰直角三角形的性质得出∠CBA=45°,再利用角平分线的定义解答即可;
②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明△ABD≌△ACG,利用全等三角形的性质解答即可;
(2)过点A作AH⊥AE,交BE于点H,证明△ABH≌△ACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.

解答 解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,
∴∠CBA=45°,
∵BD平分∠ABC,
∴∠DBA=22.5°,
∵CE⊥BD,
∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,
∵∠CDE=∠BDA,
∴∠ECD=∠DBA=22.5°;
②延长CE交BA的延长线于点G,如图1:

∵BD平分∠ABC,CE⊥BD,
∴CE=GE,
在△ABD与△ACG中,
$\left\{\begin{array}{l}{∠DBA=∠ACG}\\{∠BAC=∠CAG}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACG(AAS),
∴BD=CG=2CE;
(2)结论:BE-CE=2AF.
过点A作AH⊥AE,交BE于点H,如图2:

∵AH⊥AE,
∴∠BAH+∠HAC=∠HAC+∠CAE,
∴∠BAH=∠CAE,
在△ABH与△ACE中,
$\left\{\begin{array}{l}{∠HBA=∠ECA}\\{AB=AC}\\{∠BAH=∠ACE}\end{array}\right.$,
∴△ABH≌△ACE(ASA),
∴CE=BH,AH=AE,
∴△AEH是等腰直角三角形,
∴AF=EF=HF,
∴BE-CE=2AF.

点评 本题考查的是全等三角形的判定和性质,正确的构建出与所求和已知相关的全等三角形,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网