题目内容

12.如图,在甲楼顶上观察乙楼,俯角α=45°、仰角β=30°,已知乙楼的高度约为50m,试求甲、乙两楼之间的距离BD和甲楼的高度AB.

分析 过点A作AE⊥CD于点E,在直角△ADE中利用三角函数求得DE的长,然后在直角△AEC中求得CE的长,列方程即可求解.

解答 解:过A作AE⊥CD于E,则∠CAE=30°,∠DAE=45°,AB=DE,AE=BD,
∵∠DAE=45°,AE⊥CD,
∴∠DAE=45°,
∴AE=DE.
在Rt△ACE中,CE=AE•tan∠CAE=BD•$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}BD}{3}$,
∴CD=CE+DE=$\frac{\sqrt{3}BD}{3}$+BD=50,
∴BD=75($\sqrt{3}$-1),
∴AB=DE=BD=75($\sqrt{3}$-1).

点评 本题考查了解直角三角形的应用-仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网