题目内容

如图,Rt△ABC中,∠BAC=60°,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.

(1)求∠CAD的度数;

(2)若OA = 2,求阴影部分的面积(结果保留π).

【答案】(1)∠CAD的度数为30°;

(2)阴影部分的面积为.

【解析】试题分析:(1)连接OD.由切线的性质可知OD⊥BC,从而可证明AC∥OD,由平行线的性质和等腰三角形的性质可证明∠CAD=∠OAD;(2)连接OE,ED、OD.先证明ED∥AO,然后依据同底等高的两个三角形的面积相等可知S△AED=S△EDO,于是将阴影部分的面积可转化为扇形EOD的面积求解即可.

试题解析:(1)连接OD,

∵BC是⊙O的切线,D为切点,

∴OD⊥BC.

又∵AC⊥BC,

∴OD∥AC,

∴∠ADO=∠CAD.

又∵OD=OA,

∴∠ADO=∠OAD,

∴∠CAD=∠OAD=30°.

(2)连接OE,ED.

∵∠BAC=60°,OE=OA,

∴△OAE为等边三角形,

∴∠AOE=60°,

∴∠ADE=30°.

又∵

∴∠ADE=∠OAD,

∴ED∥AO,

∴阴影部分的面积 = .

【题型】解答题
【结束】
6

如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.

200mm2. 【解析】试题分析:根据三视图可知立体图形下面的长方体的长、宽、高分别为8mm,6mm,2mm,上面的长方体的长、宽、高分别为4mm,2mm,4mm.由此计算这个立体图形的表面积即可. 试题解析: 根据三视图可知立体图形下面的长方体的长、宽、高分别为8mm,6mm,2mm,上面的长方体的长、宽、高分别为4mm,2mm,4mm. 则这个立体图形的表面积为:2(8...
练习册系列答案
相关题目

某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示:

设该绿茶的月销售利润为w(元)(销售利润=单价×销售量-成本)

(1)请根据上表,求出y与x之间的函数关系式(不必写出自变量x的取值范围);

(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?

(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?

【答案】(1)

(2),当时,

(3)当销售单价为元时,在全部收回投资的基础上使第二个月的利润不低于1700元.

【解析】【试题分析】(1)根据表格的数据.易得销售单价每升高5元,销售量下降10Kg,即w是x的一次函数,故设设,将(70,100),(75,90)代入上式得:

解得: ,则

(2)销售利润=单位质量的利润乘以销售量,即

,化为顶点式得, ,当时,

(3)由(2)知,第1个月还有元的投资成本没有收回.则要想在全部收投资的基础上使第二个月的利润达到1700元, 即才可以,可得方程,解得: 根据题意不合题意,应舍去.当,因为-2<0,则抛物线开口向下,当时, 的增大而增大,当,且销售单价不高于80时,

【试题解析】

(1)设,将(70,100),(75,90)代入上式得:

解得: ,则

将表中其它对应值代入上式均成立,所以

(2)

因此, 的关系式为

时,

(3)由(2)知,第1个月还有元的投资成本没有收回.

则要想在全部收投资的基础上使第二个月的利润达到1700元, 即才可以,

可得方程,解得:

根据题意不合题意,应舍去.当

∵-2<0,∴,当时, 的增大而增大,

,且销售单价不高于80时,

答:当销售单价为元时,在全部收回投资的基础上使第二个月的利润不低于1700元

【题型】解答题
【结束】
18

如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.

(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.

下面是两位学生有代表性的证明思路:

思路1:不需作辅助线,直接证三角形全等;

思路2:不证三角形全等,连接BD交AF于点H.…

请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);

(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;

(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.

(1)证明见解析;(2);(3). 【解析】试题分析:(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM; 证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到=1,所以...

如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.

(1)请在图4中画出拼接后符合条件的平行四边形;

(2)请在图2中,计算裁剪的角度(即∠ABM的度数).

【答案】(1)作图见解析;(2)∠ABM=30°.

【解析】分析:(1)将图4中的△ABE向左平移30cm,△CDF向右平移30cm,拼成如图中的平行四边形,此平行四边形即为图2中的四边形ABCD.

(2)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠AMB=30°.

本题解析:(1)如图:

(2)由图2的包贴方法知:AB的长等于三棱柱的底边周长,∴AB=30.

∵ 纸带宽为15,∴ sin∠ABM =.∴∠AMB=30°.

【题型】解答题
【结束】
11

如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H.

(1)求证:

(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;

(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFFQ与△ABC重叠部分的面积为S,求S与t的函数关系式.

(1)证明见解析;(2)当x=5时,S矩形EFPQ有最大值,最大值为20;(3) 【解析】试题分析:(1)本题利用相似三角形的性质——相似三角形的对应边上的高之比等于相似比解决;(2)根据第一问的结论,即可根据矩形的面积公式得到关于矩形EFPQ的面积和x的函数关系式,根据函数的性质即可得到矩形的最大面积及对应的x的值;(3)此题要理清几个关键点,当矩形的面积最大时,由(2)可知此时EF=5,...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网