题目内容
计算:
(1)sin230°+cos245°+
sin60°•tan45°
(2)
(3)
(4)
•
.
解:(1)原式=(
)2+(
)2+
×
×1
=
+
+
=2
;
(2)原式=3
-1-2×(
)2+3
=3
-1-
+3
=3
+
;
(3)原式=[
-
]•x
=
•x
=-
;
(4)原式=
×(-
)
=-
×a2b2
=-
.
分析:(1)根据角的三角函数值得到原式=(
)2+(
)2+
×
×1,然后利用二次根式的性质计算;
(2)根据特殊角的三角函数值、零指数幂和负整数指数幂的意义得到原式=3
-1-2×(
)2+3,然后利用二次根式的性质化简后合并即可;
(3)先把括号内通分后除法运算化为乘法运算得到原式=[
-
]•x=
•x,然后约分即可;
(4)根据二次根式的乘除法则得到原式=
×(-
)
,然后利用二次根式的性质化简即可.
点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了特殊角的三角函数值、零指数幂和负整数指数幂以及分式的混合运算.
=
=2
(2)原式=3
=3
=3
(3)原式=[
=
=-
(4)原式=
=-
=-
分析:(1)根据角的三角函数值得到原式=(
(2)根据特殊角的三角函数值、零指数幂和负整数指数幂的意义得到原式=3
(3)先把括号内通分后除法运算化为乘法运算得到原式=[
(4)根据二次根式的乘除法则得到原式=
点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了特殊角的三角函数值、零指数幂和负整数指数幂以及分式的混合运算.
练习册系列答案
相关题目