题目内容

如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.
(1)若∠AFD=155°,求∠EDF的度数;
(2)若点F是AC的中点,求证:∠CFD=
1
2
∠B.
考点:等腰三角形的性质
专题:
分析:(1)求得∠A的度数后利用四边形的内角和定理求得结论即可;
(2)连接FB,根据AB=BC,且点F是AC的中点,得到BF⊥AC,∠ABF=∠CBF=
1
2
∠ABC,证得∠CFD=∠CBF后即可证得∠CFD=
1
2
∠ABC.
解答:解:(1)∵∠AFD=155°,
∴∠DFC=25°,
∵DF⊥BC,DE⊥AB,
∴∠FDC=∠AED=90°,
在Rt△EDC中,
∴∠C=90°-25°=65°,
∵AB=BC,
∴∠C=∠A=65°,
∴∠EDF=360°-65°-155°-90°=50°.
(2)连接BF
∵AB=BC,且点F是AC的中点,
∴BF⊥AC,∠ABF=∠CBF=
1
2
∠ABC,
∴∠CFD+∠BFD=90°,
∠CBF+∠BFD=90°,
∴∠CFD=∠CBF,
∴∠CFD=
1
2
∠ABC.
点评:本题考查了等腰三角形的性质,解题的关键是从复杂的图形中找到相等的线段,这是利用等腰三角形性质的基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网