题目内容
阅读材料:
我们知道,4x+2x﹣x=(4+2﹣1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)﹣(a+b)﹣(4+2﹣1)(a+b)=5(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
尝试应用:
(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是C.
A.﹣6(a﹣b)2 B.6(a﹣b)2 C.﹣2(a﹣b)2 D.2(a﹣b)2
(2)已知x2+2y=5,求3x2+6y﹣21的值;
拓广探索:
(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.
【考点】代数式求值.
【专题】计算题;整体思想.
【分析】(1)把(a﹣b)看做一个整体,合并即可得到结果;
(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;
(3)原式去括号整理后,将已知等式代入计算即可求出值.
【解答】解:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是﹣2(a﹣b)2,
故选:C;
(2)∵x2+2y=5,
∴原式=3(x2+2y)﹣21=15﹣21=﹣6;
(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,
∴原式=a﹣c+2b﹣d﹣2b+c=a﹣d=a﹣2b+2b﹣c+c﹣d=(a﹣2b)+(2b﹣c)+(c﹣d)=3﹣5+10=8.
【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目