题目内容

如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD与BC相交于点M,且BM=MC,过点D作BC的平行线,分别与AB、AC的延长线相交于点E、F.

(1)求证:EF与⊙O相切;

(2)若BC=2,MD=,求CE的长.

(1)见解析;(2) 【解析】试题分析: (1)由AD是⊙O的直径,BM=MC可得AD⊥BC,结合EF∥BC可得AD⊥EF,从而根据“切线的判定定理”可得EF与⊙O相切; (2)如图1,连接OB,过点C作CN⊥EF于点N.先证△OBM是Rt△,由勾股定理建立方程解此OB的长,因此可得AD的长和AM的长;证△ABC∽△AEF,从而可解得EF的长;在Rt△AMC中,计算出tan∠AM...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网