题目内容

16.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是(  )
A.πB.$\frac{5π}{4}$C.3+πD.8-π

分析 作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积、利用扇形面积公式计算即可.

解答 解:作DH⊥AE于H,
∵∠AOB=90°,OA=3,OB=2,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=$\sqrt{13}$,
由旋转的性质可知,OE=OB=2,DE=EF=AB=$\sqrt{13}$,△DHE≌△BOA,
∴DH=OB=2,
阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积
=$\frac{1}{2}$×5×2+$\frac{1}{2}$×2×3+$\frac{90×π×{3}^{2}}{360}$-$\frac{90×π×13}{360}$
=8-π,
故选:D.

点评 本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=$\frac{nπ{R}^{2}}{360}$和旋转的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网