题目内容
求证:四边形ABCD是平行四边形.
考点:平行四边形的判定与性质
专题:证明题
分析:由“平行四边形的对角线相互平分”推知OD=OB,OE=OF;然后结合已知条件推知四边形ABCD的对角线互相平分,则易证得结论.
解答:
证明:如图,连结BD交AC于点O.
∵四边形DEBF为平行四边形,
∴OD=OB,OE=OF,
∵AF=CE,
∴AF-EF=CE-EF,即AE=CF,
∴AE+OE=CF+OF,即OA=OC
∴四边形ABCD是平行四边形.
∵四边形DEBF为平行四边形,
∴OD=OB,OE=OF,
∵AF=CE,
∴AF-EF=CE-EF,即AE=CF,
∴AE+OE=CF+OF,即OA=OC
∴四边形ABCD是平行四边形.
点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
练习册系列答案
相关题目
在一次统计调查中,小明得到以下一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )
| A、3.5,3 | B、3,4 |
| C、3,3.5 | D、4,3 |