设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

⑴阅读填空

如图①,已知矩形ABCD,延长ADE,使DEDC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.

理由:连接AHEH

∵ AE为直径  ∴ ∠AHE=90°  ∴ ∠HAE+∠HEA=90°.

∵ DHAE  ∴ ∠ADH=∠EDH=90°

∴ ∠HAD+∠AHD=90°

∴ ∠AHD=∠HED  ∴ △ADH∽_____________.

∴ ,即AD×DE

又∵ DEDC  ∴ =____________,即正方形DFGH与矩形ABCD等积.

⑵操作实践

平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.

如图②,请用尺规作图作出与□ABCD等积的矩形(不要求写具体作法,保留作图痕迹).

⑶解决问题

三角形的“化方”思路是:先把三角形转化为等积的_________________(填写图形名称),再转化为等积的正方形.

如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).

⑷拓展探究

n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n-1边形,…,直至转化为等积的三角形,从而可以化方.

如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网