题目内容
已知点A、B、P是⊙O上不同的三点,∠APB=α,点M是⊙O上的动点,且使△ABM为等腰三角形.若满足题意的点M只有2个,则符合条件的α的值有
- A.1个
- B.2个
- C.3个
- D.4个
C
分析:当三角形AMB为直角三角形,且满足题意得到点M只有2个,得到AB为圆O的直径,根据直径所对的圆周角为直角,可得出∠APB为直角,此外当∠APB=α=60°,120°也符合题意,故符合条件的α的值有3个.
解答:
解:由满足题意的M只有2个,得到AB为圆O的直径,
∴∠APB=α=90°;
当∠APB=α=60°或120°也符合题意,
则符合条件的α值有3个.
故选C
点评:此题考查了圆周角定理,以及等腰三角形的性质,由满足题意得到点M只有2个,得到AB为圆O的直径是解题的关键.
分析:当三角形AMB为直角三角形,且满足题意得到点M只有2个,得到AB为圆O的直径,根据直径所对的圆周角为直角,可得出∠APB为直角,此外当∠APB=α=60°,120°也符合题意,故符合条件的α的值有3个.
解答:
解:由满足题意的M只有2个,得到AB为圆O的直径,
∴∠APB=α=90°;
当∠APB=α=60°或120°也符合题意,
则符合条件的α值有3个.
故选C
点评:此题考查了圆周角定理,以及等腰三角形的性质,由满足题意得到点M只有2个,得到AB为圆O的直径是解题的关键.
练习册系列答案
相关题目
已知点(3,-1)是双曲线y=
(k≠0)上的一点,则下列各点不在该双曲线上的是( )
| k |
| x |
A、(
| ||
B、(6,-
| ||
| C、(-1,3) | ||
| D、(3,1) |
已知点(3,1)是双曲线y=
(k≠0)上一点,则下列各点中在该图象上的点是( )
| k |
| x |
A、(
| ||
| B、(1,3) | ||
| C、(-1,3) | ||
D、(6,-
|