题目内容
考点:二次函数图象与几何变换
专题:
分析:先利用配方法得到抛物线y=x2-2x的顶点坐标为(1,-1),则抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2-2x,然后利用阴影部分的面积等于三角形面积进行计算.
解答:解:y=x2-2x=(x-1)2-1,即平移后抛物线的顶点坐标为(1,-1),
所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2-2x,
所以对称轴与两抛物线所围成的阴影部分的面积=
×1×2=1.
故答案为1.
所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2-2x,
所以对称轴与两抛物线所围成的阴影部分的面积=
| 1 |
| 2 |
故答案为1.
点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
练习册系列答案
相关题目
下列关于x的一元二次方程中,有两个不相等的实数根的方程是( )
| A、x2+4=0 |
| B、4x2-4x+1=0 |
| C、x2+x+3=0 |
| D、x2+2x-1=0 |