题目内容
如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是( )
![]()
A. 50° B. 60° C. 100° D. 120°
A 【解析】根据全等三角形的性质求出∠B=∠EDF=20°和∠C=∠F =60°,根据三角形内角和定理求出∠BAC=180°﹣∠B﹣∠C=100°,根据角平分线定义求出∠DAC=∠BAC=50°, 故选:A.
练习册系列答案
相关题目
下表给出了代数式﹣x2+bx+c与x的一些对应值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
﹣x2+bx+c | … | 5 | n | c | 2 | ﹣3 | ﹣10 | … |
(1)根据表格中的数据,确定b,c,n的值;
(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.
(1)b=-2,c=5,n=6;(2)y的最大值是5. 【解析】试题分析:(1)把(﹣2,0)、(1,2)分别代入﹣x2+bx+c中得到关于b、c的方程组,然后解方程组即可得到b、c的值;然后计算x=﹣1时的代数式的值即可得到n的值; (2)利用表中数据即可求解. 试题解析:(1)根据表格数据可得 ,解得, ∴﹣x2+bx+c=﹣x2﹣2x+5, 当x=﹣1时,﹣x2...