题目内容

如图,在矩形ABCD中,E为CD的中点,H为BE上的一点, =3,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.

(1)求证:

(2)若∠CGF=90°,求的值.

(1)证明见解析;(2) =3. 【解析】试题分析:(1)根据相似三角形判定的方法,判断出△CEH∽△GBH,即可推得结论; (2)作EM⊥AB于M,则EM=BC=AD,AM=DE,设DE=CE=3a,则AB=CD=6a,由(1)得: =3,得出BG=CE=a,AG=5a,证明△DEF∽△GEC,由相似三角形的性质得出EG•EF=DE•EC,由平行线证出=,得出EF=EG,求出EG=a...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网