题目内容
若x2-y2=12,x+y=6,则x=
4
4
,y=2
2
.分析:利用平方差公式化简第一个等式左边,将x+y=6代入求出x-y的值,联立组成方程组即可求出x与y的值.
解答:解:∵x2-y2=12,x+y=6,
∴(x+y)(x-y)=6(x-y)=12,即x-y=2,
联立得:
,
解得:
.
故答案为:4;2
∴(x+y)(x-y)=6(x-y)=12,即x-y=2,
联立得:
|
解得:
|
故答案为:4;2
点评:此题考查了平方差公式,以及解二元一次方程组,熟练掌握平方差公式是解本题的关键.
练习册系列答案
相关题目