题目内容
9.(1)当x取何值时,2x-5=-x+1?
(2)当x取何值时,2x-5>-x+1?
(3)当x取何值时,2x-5<-x+1?
分析 (1)直线y=2x-5与直线y=-x+1的交点横坐标的值即为方程2x-5=-x+1的解;
(2)直线y=2x-5在直线y=-x+1上方的部分对应的x的取值范围即为不等式2x-5>-x+1的解集;
(3)直线y=2x-5在直线y=-x+1下方的部分对应的x的取值范围即为不等式2x-5<-x+1的解集.
解答 解:(1)由图象可知,直线y=2x-5与直线y=-x+1的交点的横坐标是2,所以当x取2时,2x-5=-x+1;
(2)由图象可知,当x>2时,直线y=2x-5落在直线y=-x+1的上方,即2x-5>-x+1;
(3)由图象可知,当x<2时,直线y=2x-5落在直线y=-x+1的下方,即2x-5<-x+1.
点评 本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程的关系.
练习册系列答案
相关题目
5.
如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
17.
如图,△ABC内接于半径为5的⊙O,BC=8.则∠A的正切值等于( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |