题目内容
一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是( )
A. B. C. D.
已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).
(1)求证:方程有两个不相等的实数根;
(2)若方程的两个实数根都是整数,求k的值.
若(x-1)2=4则x=_____________.
小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.
小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是( )
A. 游戏对小明有利 B. 游戏对小白有利
C. 这是一个公平游戏 D. 不能判断对谁有利
已知△ABC中,AB=AC,∠BAC=90°.
(1)如图,若CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究线段BE和CD的数量关系,并证明你的结论
(2)如图,若点D在线段BC延长上,BE⊥DE,垂足为E,DE与AB相交于点F.试探究线段BE和FD的数量关系,并证明你的结论.
如图,在?ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为 .
如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是 .