题目内容

2.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连结BE,BF,则∠EBF的度数是多少?

分析 过E作HI∥BC,分别交AB、CD于点H、I,证明Rt△BHE≌Rt△EIF,可得∠IEF+∠HEB=90°,再根据BE=EF即可解题.

解答 解:如图所示,过E作HI∥BC,分别交AB、CD于点H、I,则∠BHE=∠EIF=90°,

∵E是BF的垂直平分线EM上的点,
∴EF=EB,
∵E是∠BCD角平分线上一点,
∴E到BC和CD的距离相等,即BH=EI,
Rt△BHE和Rt△EIF中,
$\left\{\begin{array}{l}{EF=BE}\\{BH=EI}\end{array}\right.$,
∴Rt△BHE≌Rt△EIF(HL),
∴∠HBE=∠IEF,
∵∠HBE+∠HEB=90°,
∴∠IEF+∠HEB=90°,
∴∠BEF=90°,
∵BE=EF,
∴∠EBF=∠EFB=45°.

点评 本题考查了正方形角平分线和对角线重合的性质,考查了直角三角形全等的判定,全等三角形对应角相等的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网