ÌâÄ¿ÄÚÈÝ
1£®£¨1£©½â·½³Ì×é$\left\{\begin{array}{l}{3x-5y=3}\\{\frac{x}{2}-\frac{y}{3}=1}\end{array}\right.$£®£¨2£©ÇóxµÄÖµ£º£¨x-15£©2=169
£¨3£©¼ÆË㣺$\frac{1}{2}$+£¨-1£©2009+$\sqrt{\frac{1}{4}}$-|-5|+$\sqrt{1\frac{9}{16}}$+$\root{3}{-2+\frac{3}{64}}$£®
·ÖÎö £¨1£©ÏȽ«·½³Ì×éÖеķ½³Ì»¯Îª²»º¬·ÖĸµÄ·½³Ì£¬ÔÙÓüӼõÏûÔª·¨»ò´úÈëÏûÔª·¨Çó½â¼´¿É£»
£¨2£©ÀûÓÃÖ±½Ó¿ª·½·¨Çó³öxµÄÖµ¼´¿É£»
£¨3£©Ïȸù¾ÝÓÐÀíÊý³Ë·½¼°¿ª·½µÄ·¨Ôò¼ÆËã³ö¸÷Êý£¬ÔÙ´Ó×óµ½ÓÒÒÀ´Î¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©Ô·½³Ì×é¿É»¯Îª$\left\{\begin{array}{l}3x-5y=3¢Ù\\ 3x-2y=6¢Ú\end{array}\right.$£¬
¢Ù-¢ÚµÃ£¬-3y=-3£¬½âµÃy=1£»°Ñy=1´úÈë¢ÙµÃ£¬3x-5=3£¬½âµÃx=$\frac{8}{3}$£¬
¹ÊÔ·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}x=\frac{8}{3}\\ y=1\end{array}\right.$£»
£¨2£©Á½±ß¿ª·½µÃ£¬x-15=¡À13£¬
¹Êx1=28£¬x2=2£»
£¨3£©Ôʽ=$\frac{1}{2}$-1+$\frac{1}{2}$-5+$\frac{5}{4}$-$\frac{5}{4}$
=-5£®
µãÆÀ ±¾Ì⿼²éµÄÊǽâ¶þÔªÒ»´Î·½³Ì×飬ÊìÖª½â¶þÔªÒ»´Î·½³Ì×éµÄ¼Ó¼õÏûÔª·¨ºÍ´úÈëÏûÔª·¨Êǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÏÂÁÐʽ×ÓÖУ¬ÊÇÒ»ÔªÒ»´Î·½³ÌµÄÊÇ£¨¡¡¡¡£©
| A£® | x+1 | B£® | x+1=2 | C£® | x+y=1 | D£® | x2+1=2 |
9£®È¥ÄêÎÒÊ¡¹æ»®Öؽ¨Ð£ÉáÔ¼3876000ƽ·½Ã×£¬Õâ¸öÊý¾«È·µ½Ê®Íòλ²¢ÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
| A£® | 3.8¡Á106ƽ·½Ã× | B£® | 3.8¡Á107ƽ·½Ã× | C£® | 3.9¡Á106ƽ·½Ã× | D£® | 3.9¡Á107ƽ·½Ã× |
16£®ÒÑÖªÖ±½Ç×ø±êϵÖУ¬µãP£¨x£¬y£©Âú×㣨5x+2y-12£©2+|3x+2y-6|=0£¬ÔòµãP×ø±êΪ£¨¡¡¡¡£©
| A£® | £¨3£¬-1.5£© | B£® | £¨-3£¬-1.5£© | C£® | £¨-2£¬-3£© | D£® | £¨2£¬-3£© |
11£®ÏÂÁÐÃüÌâÊǼÙÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A£® | È«µÈÈý½ÇÐεĶÔÓ¦½ÇÏàµÈ | B£® | ¶ÔÓÚʵÊýa¡¢b¡¢c£¬Èôa£¾b£¬Ôòac2£¾bc2 | ||
| C£® | »¥²¹µÄÁ½¸ö½Ç²»¿ÉÄܶ¼ÊÇÈñ½Ç | D£® | ÈôÖ±Ïßa¡¢b¡¢cÂú×ãa¡Îb£¬b¡Îc£¬Ôòa¡Îc |