题目内容
观察规律并填空
(1-
)=
•
=
;
(1-
)(1-
)=
•
•
•
=
•
=
(1-
)(1-
)(1-
)=
•
•
•
•
•
=
•
=
;
(1-
)(1-
)(1-
)(1-
)=
•
•
•
•
•
•
•
=
•
=
;
…
(1-
)(1-
)(1-
)(1-
)…(1-
)= .(用含n的代数式表示,n是正整数,且n≥2)
(1-
| 1 |
| 22 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
| 2 |
| 3 |
(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 1 |
| 2 |
| 5 |
| 4 |
| 5 |
| 8 |
(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 52 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 4 |
| 5 |
| 6 |
| 5 |
| 1 |
| 2 |
| 6 |
| 5 |
| 3 |
| 5 |
…
(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 52 |
| 1 |
| n2 |
考点:规律型:数字的变化类
专题:规律型
分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1-
)和(1+
)相乘得出结果.
| 1 |
| 2 |
| 1 |
| n |
解答:解:(1-
)(1-
)(1-
)(1-
)…(1-
)
=
•
•
•
•
•
•
…
=
.
故答案为:
.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 52 |
| 1 |
| n2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 4 |
| 5 |
| n+1 |
| n |
=
| n+1 |
| 2n |
故答案为:
| n+1 |
| 2n |
点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.
练习册系列答案
相关题目