题目内容

4.根据题意结合图形填空:如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:AC∥DF.将过程补充完整.
解:∵∠1=∠2(已知)
且∠1=∠3对顶角相等
∴∠2=∠3(等量代换)
∴BD∥CE
∴∠C=∠ABD两条直线平行,同位角相等
又∵∠C=∠D(已知)
∴∠ABD=∠D(等量代换 )
∴AC∥DF内错角相等,两条直线平行.

分析 由条件可先证明EC∥DB,可得到∠D=∠ABD,再结合条件两直线平行的判定可证明AC∥DF,依次填空即可.

解答 解:∵∠1=∠2(已知)
且∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴EC∥DB(同位角相等,两直线平行)
∴∠C=∠ABD(两直线平行,同位角相等)
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代换)
∴AC∥DF(内错角相等,两直线平行)
故答案为:对顶角相等;BD,CE;两条直线平行,同位角相等;∠ABD,∠D;内错角相等,两条直线平行.

点评 本题主要考查了平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网