题目内容

如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是(  )
A、3∠A=2∠1-∠2
B、2∠A=2(∠1-∠2)
C、2∠A=∠1-∠2
D、∠A=∠1-∠2
考点:三角形的外角性质,翻折变换(折叠问题)
专题:
分析:根据折叠性质得出∠A=∠A′,根据三角形外角性质得出∠1=∠DOA+∠A,∠DOA=∠2+∠A′,即可得出答案.
解答:解:
∵根据折叠性质得出∠A=∠A′,
∴∠1=∠DOA+∠A,∠DOA=∠2+∠A′,
∴∠1=∠A+∠2+∠A,
∴2∠A=∠1-∠2,
故选C.
点评:本题考查了折叠的性质,三角形外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网