题目内容
解方程:
【解析】
试题分析:观察方程特点适合用因式分解法解方程.
试题解析:
,
考点:解一元二次方程.
如图,在△ACD和△ABD中,∠C=∠B=,要使△ACD≌△ABD,还需增加一个条件是 。
已知方程的两个根分别是2和,则可分解为
A、 B、
C、 D、
将图中的△ABC作下列变换,画出相应的图形,指出三个顶点的坐标所发生的变化。
(1)沿y轴正向平移2个单位;
(2)关于y轴对称 ;
(3)在给出的方格图中,以点B为位似中心,放大到2倍。
如图,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).
如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△DEF的边FE也在直线上,边DF与边AC重合,且DF=EF.
(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)
(2)将△DEF沿直线向左平移到图(2)的位置时,DE交AC于点G,连结AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
在平面直角坐标系中,点P(-2,3)关于x轴的对称点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的, 求这个多边形的边数及内角和.
如图,在矩形ABCD中,AD=4,DC=3,将△ADC绕点A按逆时针方向旋转到△AEF(点A、B、E同一直线上),则AC所扫过的面积为 .