题目内容
10.(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
分析 (1)求出EC=DB,∠B=∠C,根据SAS推出△BED≌△CFE,根据全等三角形的性质得出DE=EF即可;
(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC,求出∠DEB+∠FEC=110°,即可得出答案;
(3)根据等腰直角三角形得出∠DEF=90°,求出∠B=90°,∠C=90°,根据三角形内角和定理即可得出答案.
解答 (1)证明:∵AD+EC=AB=AD+DB,
∴EC=DB,
又∵AB=AC,
∴∠B=∠C,
在△BED和△CFE中
$\left\{\begin{array}{l}{BD=CE}\\{∠B=∠C}\\{BE=CF}\end{array}\right.$
∴△BED≌△CFE,
∴DE=EF,
∴△DEF是等腰三角形;
(2)解:∵∠A=40°,
∴∠B=∠C=70°,
∵由(1)知△BED≌△CFE,
∴∠BDE=∠FEC,
∴∠DEB+∠FEC=∠DEB+∠BDE=180°-∠B=110°,
∴∠DEF=180°-(∠DEB+∠FEC)=70°;
(3)解:∵若△DEF是等腰直角三角形,则∠DEF=90°,
∴∠DEB+∠BDE=90°,
∴∠B=90°,因而∠C=90°,
∴△DEF不可能是等腰直角三角形.
点评 本题考查了全等三角形的性质和判定,等腰三角形的性质,三角形内角和定理的应用,能灵活运用性质进行推理是解此题的关键.
练习册系列答案
相关题目
20.⊙O的半径为2cm,若直线a上有一点到圆心的距离为2cm,则直线a和圆O的位置关系是( )
| A. | 相交 | B. | 相切 | C. | 相离 | D. | 相切或相交 |
20.把数据1.804精确到0.01得( )
| A. | 1.8 | B. | 1.80 | C. | 2 | D. | 1.804 |