题目内容
5.分析 根据数阵的规律求出2016的位置,进而得出m、n的值,代入一元一次方程求解即可.
解答 解:观察数阵,第一行有一个数,第二行有两个数,
则第n行有n个数,
1+2+3+…+n=$\frac{(1+n)n}{2}$,
∴$\frac{(1+n)n}{2}$=2016,
解得:n=63,或n=-64(舍),
∴第1行至63行共有2016个数字,
∴2016在63行的第一列,
∴m=63,n=,
代入一元一次方程得:
x-63=0,
解得:x=63.
故答案为:63.
点评 题目考查了数字的变化规律,并通过数字变化求解,考察一元一次方程,题目整体较难,适合学生拔高训练.
练习册系列答案
相关题目
16.下列说法中正确的有( )
①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.
①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
13.零上3℃记作+3℃,零下2℃可记作( )
| A. | 2 | B. | -2 | C. | 2℃ | D. | -2℃ |