ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖª¶þ´Îº¯Êýy=$\frac{\sqrt{2}}{9}$x2+$\frac{2\sqrt{2}}{3}$x+$\sqrt{2}$µÄͼÏóÓëxÖá¡¢yÖá½»ÓÚµãA¡¢B£¬Ò»´Îº¯Êýy=-$\sqrt{2}$x+bͼÏó¾¹ýBµã£¬²¢ÓëxÖá½»ÓÚµãC£¬ÈôµãDÔÚxÖáÉÏ£¬ÇÒ¡ÏBCD=¡ÏABD£¬ÔòͼÏó¾¹ýB¡¢DÁ½µãµÄÒ»´Îº¯Êý½âÎöʽΪy=-$\frac{2\sqrt{2}}{5}$x+$\sqrt{2}$»òy=4$\sqrt{2}$x+$\sqrt{2}$£®·ÖÎö Ê×ÏÈÇó³öµãA¡¢µãBºÍµãCµÄ×ø±ê£¬È»ºóÉèµãDµã×ø±êΪ£¨a£¬0£©£¬ÀûÓáÏBCD=¡ÏABD£¬¡ÏBDC=¡ÏADBÖ¤Ã÷¡÷BCD¡×¡÷ABD£¬¿ÉµÃ$\frac{BD}{AD}=\frac{BC}{AB}$£¬ÁгöaµÄ·½³Ì£¬Çó³öaµÄÖµ£¬½ø¶øµÃµ½DµãµÄ×ø±ê£¬ÓÚÊÇÇó³ö¹ýB¡¢DÁ½µãµÄÒ»´Îº¯Êý½âÎöʽ£®
½â´ð
½â£º¸ù¾ÝÌâÒâ»Í¼ÈçÓÒ£º
Áîy=$\frac{\sqrt{2}}{9}$x2+$\frac{2\sqrt{2}}{3}$x+$\sqrt{2}$=0£¬
½âµÃx=-3£¬
¼´µãA×ø±êΪ£¨-3£¬0£©£¬
Áîx=0£¬y=$\sqrt{2}$£¬
¼´µãB×ø±ê£¨0£¬$\sqrt{2}$£©£¬
¡ßÒ»´Îº¯Êýy=-$\sqrt{2}$x+bͼÏó¾¹ýBµã£¬
¡àb=$\sqrt{2}$£¬
¡àCµã×ø±êΪ£¨1£¬0£©£¬
ÉèµãDµã×ø±êΪ£¨a£¬0£©£¬
¡ß¡ÏBCD=¡ÏABD£¬¡ÏBDC=¡ÏADB£¬
¡à¡÷BCD¡×¡÷ABD£¬
¡à$\frac{BD}{AD}=\frac{BC}{AB}$£¬
¡à$\frac{\sqrt{{a}^{2}+2}}{a+3}=\frac{\sqrt{3}}{\sqrt{11}}$£¬
¡àa=$\frac{5}{2}$»òa=-$\frac{1}{4}$£¬
¡àµãD×ø±êΪ£¨$\frac{5}{2}$£¬0£©»ò£¨-$\frac{1}{4}$£¬0£©£¬
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+$\sqrt{2}$£¬
µ±µãD×ø±êΪ£¨$\frac{5}{2}$£¬0£©Ê±£¬
k=-$\frac{2\sqrt{2}}{5}$£¬
Ö±ÏßBDµÄ½âÎöʽΪy=-$\frac{2\sqrt{2}}{5}$x+$\sqrt{2}$£»
µ±µãD×ø±êΪ£¨-$\frac{1}{4}$£¬0£©£¬
k=4$\sqrt{2}$£¬
Ö±ÏßBDµÄ½âÎöʽΪy=4$\sqrt{2}$x+$\sqrt{2}$£¬
¹Ê´ð°¸Îªy=-$\frac{2\sqrt{2}}{5}$x+$\sqrt{2}$»òy=4$\sqrt{2}$x+$\sqrt{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÅ×ÎïÏßÓëxÖá½»µãµÄ֪ʶ£¬½â´ð±¾ÌâµÄ¹Ø¼üÊÇÓÉ¡÷BCD¡×¡÷ABDµÃµ½µãDµÄ×ø±ê£¬´ËÌâÓÐÒ»¶¨µÄÄѶȣ®
| A£® | 5.29¡Á10-8cm | B£® | 5.29¡Á10-9cm | C£® | 0.529¡Á10-8cm | D£® | 52.9¡Á10-10cm |
| A£® | $\frac{600}{x-50}$=$\frac{450}{x}$ | B£® | $\frac{600}{x}$=$\frac{450}{x+50}$ | C£® | $\frac{600}{x+50}$=$\frac{450}{x}$ | D£® | $\frac{600}{x}$=$\frac{450}{x-50}$ |