题目内容

请观察下列算式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

则第10个算式为______=______,
第n个算式为______=______
请计算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2002×2003
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

1
4×5
=
1
4
-
1
5


第10个算式为
1
10×11
=
1
10
-
1
11

第n个算式为
1
n×(n+1)
=
1
n
-
1
n+1

故答案为:
1
10×11
=
1
10
-
1
11
1
n×(n+1)
=
1
n
-
1
n+1

1
1×2
+
1
2×3
+
1
3×4
+…+
1
2002×2003

=1-
1
2
+
1
2
-
1
3
+…+
1
2002
-
1
2003

=1-
1
2003

=
2002
2003
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网