题目内容

对于函数y=x2,下列结论正确的是(  )
A、图象的开口向下
B、y随x增大而增大
C、图象关于y轴对称
D、对于任意实数,都有y>0
考点:二次函数的性质
专题:
分析:根据二次函数y=x2的性质进行判断即可;
解答: 解:∵a=1>0,图象的开口向上,对称轴为y轴;
∴当x>0时,y随x的增大而增大,
当x=0时,y=0.
故选C.
点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a
),对称轴直线x=-
b
2a
,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-
b
2a
时,y随x的增大而减小;x>-
b
2a
时,y随x的增大而增大;x=-
b
2a
时,y取得最小值
4ac-b2
4a
,即顶点是抛物线的最低点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网