题目内容

已知x2
1
x2
=2,则
1
x
+x9+
1
x9
 +x
=______.
x2+
1
x2
=2,
(x+
1
x
)
2
-2x•
1
x
=2,
(x+
1
x
)
2
=4,
∴x+
1
x
=±2,
①x+
1
x
=2时,
x3+
1
x3
=(x+
1
x
)(x2-x•
1
x
+
1
x2
)=2×(2-1)=2,
∴两边平方得:x6+2x3
1
x3
+
1
x6
=4,
∴x6+
1
x6
=4-2=2,
x9+
1
x9
=(x33+(
1
x3
)
3
=(x3+
1
x3
)(x6-x3
1
x3
+
1
x6
)=2×(2-1)=2,
1
x
+x9+
1
x9
+x=2+2=4;
②x+
1
x
=-2时,同法可求
1
x
+x9+
1
x9
+x=-2-2=-4.
故答案为:±4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网