题目内容

15.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针旋转60°,得△ADC,连接OD.
(1)判断△COD的形状,并证明;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)直接写出α为多少度时,△AOD是等腰三角形?

分析 (1)由旋转的性质得出CO=CD、∠OCD=60°即可知△COD是等边三角形;
(2)由旋转可以得出 OC=DC,∠DCO=60°,就可以得出△ODC是等边三角形,就可以得出∠ODC=60°,从而得出∠ADO=90°,而得出△AOD的形状;
(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.

解答 解:(1)△COD是等边三角形,
∵△BOC绕点C按顺时针方向旋转60°得△ADC,
∴△BOC≌△ADC,∠OCD=60°
∴CO=CD
∴△COD是等边三角形.

(2)当α=150°时,△AOD是直角三角形.
∵△BOC绕点C按顺时针方向旋转60°得△ADC
∴△BOC≌△ADC,
∴∠BOC=∠ADC=150°
由(1)△COD是等边三角形
∴∠ODC=60°
∴∠ADO=150°-60°=90°
当α=150°时,△AOD是直角三角形.

(3)∵∠AOB=110°,∠BOC=α
∴∠AOC=250°-a.
∵△OCD是等边三角形,
∴∠DOC=∠ODC=60°,
∴∠ADO=a-60°,∠AOD=190°-a,
①当∠DAO=∠DOA时,
2(190°-a)+a-60°=180°,
解得:a=140°
②当∠AOD=ADO时,
190°-a=a-60°,
解得:a=125°,
③当∠OAD=∠ODA时,
190°-a+2(a-60°)=180°,
解得:a=110°
∴α=110°,α=140°,α=125°.

点评 本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网