题目内容

如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
考点:抛物线与x轴的交点,待定系数法求二次函数解析式,二次函数与不等式(组)
专题:待定系数法
分析:(1)根据抛物线的对称性来求点D的坐标;
(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;
(3)根据图象直接写出答案.
解答:解:(1)∵如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,
∴对称轴是x=
-3+1
2
=-1.
又点C(0,3),点C、D是二次函数图象上的一对对称点,
∴D(-2,3);

(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),
根据题意得 
9a-3b+c=0
a+b+c=0
c=3

解得
a=-1
b=-2
c=3

所以二次函数的解析式为y=-x2-2x+3;

(3)如图,一次函数值大于二次函数值的x的取值范围是x<-2或x>1.
点评:本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组.解题时,要注意数形结合数学思想的应用.另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网