题目内容

马航MH370 客机“失联”,我国“海巡01号”前往搜寻.如图某天上午9时,“海巡01号”轮船位于A处,观测到某小岛P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到小岛P位于该船的南偏西30°方向,求此时轮船所处位置B与小岛P的距离?(精确到0.1)
考点:解直角三角形的应用-方向角问题
专题:
分析:首先根据题意可得PC⊥AB,然后设PC=x海里,分别在Rt△APC中与Rt△PCB中,利用正切函数求得出AC与BC的长,由AB=21×5,即可得方程,解此方程即可求得x的值,继而求得答案.
解答:解:过点P作PC⊥AB,垂足为C,设PC=x海里.
在Rt△APC中,∵tan∠A=
PC
AC

∴AC=
PC
tan67.5°
=
5x
12

在Rt△PCB中,∵tan∠B=
PC
BC

∴BC=
x
tan30°
=
3
x,PB=2PC=2x.
∵AC+BC=AB=21×5,
5x
12
+
3
x=105,
解得x≈48.86,
∴PB=2x≈97.7(海里).
答:此时轮船所处位置B与小岛P的距离约为97.7海里.
点评:此题考查了方向角问题.此题难度适中,注意结合实际问题,利用解直角三角形的相关知识求解是解此题的关键,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网