题目内容


如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是      (结果保留π).


 3π (结果保留π).

【考点】扇形面积的计算;平行四边形的性质.

【专题】压轴题.

【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.

【解答】解:过D点作DF⊥AB于点F.

∵AD=2,AB=4,∠A=30°,

∴DF=AD•sin30°=1,EB=AB﹣AE=2,

∴阴影部分的面积:

4×1﹣﹣2×1÷2

=4﹣π﹣1

=3﹣π.

故答案为:3﹣π.

【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网