题目内容
【题目】我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15
![]()
依上述规律,解决下列问题:(1)若s=1,则a2=___;(2)若s=2,则a0+a1+a2+…+a15=___.
【答案】(1)105; (2)315.
【解析】
(1)根据图形中的规律即可求出(1+x)15的展开式中第三项的系数为前14个数的和;
(2)根据x的特殊值代入要解答,即把x=1代入时,得到结论.
(1)由图2知:(a+b)1的第三项系数为0,
(a+b)2的第三项的系数为:1,
(a+b)3的第三项的系数为:3=1+2,
(a+b)4的第三项的系数为:6=1+2+3,
…
∴发现(1+x)3的第三项系数为:3=1+2;
(1+x)4的第三项系数为6=1+2+3;
(1+x)5的第三项系数为10=1+2+3+4;
不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),
∴s=1,则a2=1+2+3+…+14=105.
故答案为:105;
(2)∵(s+x)15=a0+a1x+a2x2+…+a15x15.
当x=1时,a0+a1+a2+…+a15=(2+1)15=315,
故答案为:315.
练习册系列答案
相关题目