题目内容
【题目】思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是 米.
![]()
思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.
①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是 ;
②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;
③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.
【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC2=
.
【解析】
(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB=CD,即可解题.
(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.
②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF=DE=AE,再证明△FBC≌△EAC(SAS),可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.
③作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,得∠FBC=∠EAC,同②可证可得PC=PE,PC⊥PE,再由已知解三角形得∴EC2=CH2+HE2=
,即可求出![]()
(1)解:∵CD∥AB,∴∠C=∠B,
在△ABP和△DCP中,
,
∴△ABP≌△DCP(SAS),
∴DC=AB.
∵AB=200米.
∴CD=200米,
故答案为:200.
(2)①PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.
理由如下:如解图1,延长EP交BC于F,
同(1)理,可知∴△FBP≌△EDP(SAS),
∴PF=PE,BF=DE,
又∵AC=BC,AE=DE,
∴FC=EC,
又∵∠ACB=90°,
∴△EFC是等腰直角三角形,
∵EP=FP,
∴PC=PE,PC⊥PE.
②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.
理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,
同①理,可知△FBP≌△EDP(SAS),
∴BF=DE,PE=PF=
,
∵DE=AE,
∴BF=AE,
∵当α=90°时,∠EAC=90°,
∴ED∥AC,EA∥BC
∵FB∥AC,∠FBC=90,
∴∠CBF=∠CAE,
在△FBC和△EAC中,
,
∴△FBC≌△EAC(SAS),
∴CF=CE,∠FCB=∠ECA,
∵∠ACB=90°,
∴∠FCE=90°,
∴△FCE是等腰直角三角形,
∵EP=FP,
∴CP⊥EP,CP=EP=
.
③如解图3,作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,
当α=150°时,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,
∴∠FBC=∠EAC=α=150°
同②可得△FBP≌△EDP(SAS),
同②△FCE是等腰直角三角形,CP⊥EP,CP=EP=
,
在Rt△AHE中,∠EAH=30°,AE=DE=1,
∴HE=
,AH=
,
又∵AC=AB=3,
∴CH=3+
,
∴EC2=CH2+HE2=![]()
∴PC2=![]()
![]()
![]()
![]()
【题目】某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:
x(元) | 15 | 20 | 30 | … |
y(袋) | 25 | 20 | 10 | … |
若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?