ÌâÄ¿ÄÚÈÝ
4£®£¨1£©ÇóͨµÀÐ±ÃæABµÄ³¤Îª3$\sqrt{6}$Ã×£»
£¨2£©ÎªÔö¼ÓÊÐÃñÐÐ×ßµÄÊæÊʶȣ¬Ä⽫Éè¼ÆÍ¼ÖеÄͨµÀÐ±ÃæCDµÄÆÂ¶È±ä»º£¬Ð޸ĺóµÄͨµÀÐ±ÃæDEµÄÆÂ½ÇΪ30¡ã£¬Çó´ËʱBEµÄ³¤£®£¨½á¹û±£Áô¸ùºÅ£©
·ÖÎö £¨1£©¹ýµãA×÷AN¡ÍCBÓÚµãN£¬¹ýµãD×÷DM¡ÍBCÓÚµãM£¬¸ù¾ÝÒÑÖªµÃ³öDM=CM=$\frac{\sqrt{2}}{2}$CD=3$\sqrt{2}$£¬ÔòAN=DM=3$\sqrt{2}$£¬ÔÙ½âRt¡÷ANB£¬ÓÉͨµÀÐ±ÃæABµÄÆÂ¶Èi=1£º$\sqrt{2}$£¬µÃ³öBN=$\sqrt{2}$AN=6£¬È»ºó¸ù¾Ý¹´¹É¶¨ÀíÇó³öAB£»
£¨2£©ÏȽâRt¡÷MED£¬Çó³öEM=$\sqrt{3}$DM=3$\sqrt{6}$£¬µÃ³öEC=EM-CM=3$\sqrt{6}$-3$\sqrt{2}$£¬ÔÙ¸ù¾ÝBE=BC-EC¼´¿ÉÇó½â£®
½â´ð
½â£º£¨1£©¹ýµãA×÷AN¡ÍCBÓÚµãN£¬¹ýµãD×÷DM¡ÍBCÓÚµãM£¬
¡ß¡ÏBCD=135¡ã£¬
¡à¡ÏDCM=45¡ã£®
¡ßÔÚRt¡÷CMDÖУ¬¡ÏCMD=90¡ã£¬CD=6£¬
¡àDM=CM=$\frac{\sqrt{2}}{2}$CD=3$\sqrt{2}$£¬
¡àAN=DM=3$\sqrt{2}$£¬
¡ßͨµÀÐ±ÃæABµÄÆÂ¶Èi=1£º$\sqrt{2}$£¬
¡àtan¡ÏABN=$\frac{AM}{BN}$=$\frac{1}{\sqrt{2}}$£¬
¡àBN=$\sqrt{2}$AN=6£¬
¡àAB=$\sqrt{A{N}^{2}+B{N}^{2}}$=3$\sqrt{6}$£®
¼´Í¨µÀÐ±ÃæABµÄ³¤Ô¼Îª3$\sqrt{6}$Ã×£»
¹Ê´ð°¸Îª£º3$\sqrt{6}$£»
£¨2£©¡ßÔÚRt¡÷MEDÖУ¬¡ÏEMD=90¡ã£¬¡ÏDEM=30¡ã£¬DM=3$\sqrt{2}$£¬
¡àEM=$\sqrt{3}$DM=3$\sqrt{6}$£¬
¡àEC=EM-CM=3$\sqrt{6}$-3$\sqrt{2}$£¬
¡àBE=BC-EC=8-£¨3$\sqrt{6}$-3$\sqrt{2}$£©=8+3$\sqrt{2}$-3$\sqrt{6}$£®
¼´´ËʱBEµÄ³¤Ô¼Îª£¨8+3$\sqrt{2}$-3$\sqrt{6}$£©Ã×£®
µãÆÀ ±¾Ì⿼²éÁ˽âÖ±½ÇÈý½ÇÐεÄÓ¦ÓÃ-ÆÂ¶ÈÆÂ½ÇÎÊÌ⣬Èý½Çº¯ÊýµÄ¶¨Ò壬¹´¹É¶¨Àí£¬×¼È·×÷³ö¸¨ÖúÏß¹¹ÔìÖ±½ÇÈý½ÇÐÎÊǽâÌâµÄ¹Ø¼ü£®
| A£® | B£® | C£® | D£® |
| A£® | 75¡ã | B£® | 90¡ã | C£® | 120¡ã | D£® | 105¡ã |