题目内容
【题目】某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.
![]()
根据图中提供的信息,解答下列问题:
(1)本次调查的学生共有 人;在扇形统计图中,B所对应的扇形的圆心角的度数是 ;
(2)将条形统计图补充完整;
(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.
【答案】(1)200、144;(2)补全图形见解析;(3)被选中的2人恰好是1男1女的概率
.
【解析】
(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;
(2)用总人数减去其它活动人数求出C的人数,从而补全图形;
(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.
(1)本次调查的学生共有30÷15%=200(人),
扇形统计图中,B所对应的扇形的圆心角的度数是360°×
=144°,
故答案为:200、144;
(2)C活动人数为200﹣(30+80+20)=70(人),
补全图形如下:
![]()
(3)画树状图为:
![]()
或列表如下:
男 | 女1 | 女2 | 女3 | |
男 | ﹣﹣﹣ | (女,男) | (女,男) | (女,男) |
女1 | (男,女) | ﹣﹣﹣ | (女,女) | (女,女) |
女2 | (男,女) | (女,女) | ﹣﹣﹣ | (女,女) |
女3 | (男,女) | (女,女) | (女,女) | ﹣﹣﹣ |
∵共有12种等可能情况,1男1女有6种情况,
∴被选中的2人恰好是1男1女的概率
.
练习册系列答案
相关题目