题目内容
18.| A. | 6 | B. | 8 | C. | 10 | D. | 9 |
分析 过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,然后根据三角形的S△ABC=S△ABD+S△ACD列式计算即可.
解答
解:如图,过点D作DF⊥AC于F,
∵AD为角平分线,DE⊥AB,
∴DE=DF,
∴S△ABC=S△ABD+S△ACD
=$\frac{1}{2}$×6×2+$\frac{1}{2}$×4×2
=6+4
=10.
故选C.
点评 本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并作辅助线把△ABC分成两部分是解题的关键.
练习册系列答案
相关题目
13.若四边形ABCD的对角线交于点O,且有$\overrightarrow{AB}=2\overrightarrow{DC}$,则以下结论正确的是( )
| A. | $\overrightarrow{AO}=2\overrightarrow{OC}$ | B. | $|\overrightarrow{AC}|=|\overrightarrow{BD}|$ | C. | $\overrightarrow{AC}=\overrightarrow{BD}$ | D. | $\overrightarrow{DO}=2\overrightarrow{OB}$ |