题目内容

18.如图,在△ABC中,AB=AC=10,BC=16,AD⊥AC交BC于D,求DB的长.

分析 先根据勾股定理求出AE=6,设BD=x,则DE=8-x,DC=16-x,在Rt△ADE和Rt△ADC中利用勾股定理得:AD2=AE2+DE2=DC2-AC2,继而代入求出x的值即可.

解答 解:过点A作AE⊥BC与点E,
∵AB=AC=10,BC=16,
∴BE=CE=8,
在Rt△ACE中,利用勾股定理可知:AE=$\sqrt{{AC}^{2}-{CE}^{2}}$=$\sqrt{{10}^{2}-{8}^{2}}$=6,
设BD=x,则DE=8-x,DC=16-x,
又因为DA⊥CA,
在Rt△ADE和Rt△ADC中分别利用勾股定理得:AD2=AE2+DE2=DC2-AC2
代入为:62+(8-x)2=(16-x)2-102,解得:x=$\frac{7}{2}$,即DB=$\frac{7}{2}$.

点评 本题考查勾股定理及等腰三角形的性质,解题关键是在Rt△ADE和Rt△ADC中分别利用勾股定理,列出等式AD2=AE2+DE2=DC2-AC2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网