题目内容

【题目】如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB的长度等于____________

【答案】

【解析】

根据角平分线的性质可知,由于∠C=90°,,是等腰直角三角形,由勾股定理可得BD,AC的值.RtACDRtAED全等,可得AC=AE,进而得出AB的值.

AD是△ABC的角平分线,DCAC,DEAB,

DE=CD=2,
又∵AC=BC,

∴∠B=BAC,

又∵∠C=90°,

B=∠BDE=45°,

BE=DE=2.

在等腰直角三角形BDE,由勾股定理得,,

AC=BC=CD+BD=.

RtACDRtAED,

RtACDRtAEDHL.

AC=AE=,

AB=BE+AE=,

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网