题目内容

13.已知a,b,c,d,x,y,z,w是互不相等的非零实数,且$\frac{{a}_{2}{b}^{2}}{{a}^{2}{y}^{2}+{b}^{2}{x}^{2}}$=$\frac{{b}^{2}{c}^{2}}{{b}^{2}{z}^{2}+{c}^{2}{y}^{3}}$=$\frac{{c}^{2}{d}^{2}}{{c}^{2}{w}^{2}+{d}^{2}{z}^{2}}$=$\frac{abcd}{xyzw}$,求$\frac{{a}^{2}}{{x}^{2}}+\frac{{b}^{2}}{{y}^{2}}+\frac{{c}^{2}}{{z}^{2}}+\frac{{d}^{2}}{{w}^{2}}$的值.

分析 设$\frac{{a}_{2}{b}^{2}}{{a}^{2}{y}^{2}+{b}^{2}{x}^{2}}$=$\frac{{b}^{2}{c}^{2}}{{b}^{2}{z}^{2}+{c}^{2}{y}^{3}}$=$\frac{{c}^{2}{d}^{2}}{{c}^{2}{w}^{2}+{d}^{2}{z}^{2}}$=$\frac{abcd}{xyzw}$=$\frac{1}{k}$,从而得$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{z}^{2}}{{c}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{w}^{2}}{{d}^{2}}$+$\frac{{z}^{2}}{{c}^{2}}$=$\frac{xyzw}{abcd}$=k,即$\frac{{x}^{2}}{{a}^{2}}$=$\frac{{z}^{2}}{{c}^{2}}$、$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{w}^{2}}{{d}^{2}}$、$\frac{xyzw}{abcd}$=k,设$\frac{{x}^{2}}{{a}^{2}}$=$\frac{{z}^{2}}{{c}^{2}}$=k1、$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{w}^{2}}{{d}^{2}}$=k2,从而得k=$\sqrt{{{k}_{1}}^{2}•{{k}_{2}}^{2}}$、k1+k2=k,代入即可得.

解答 解:设$\frac{{a}_{2}{b}^{2}}{{a}^{2}{y}^{2}+{b}^{2}{x}^{2}}$=$\frac{{b}^{2}{c}^{2}}{{b}^{2}{z}^{2}+{c}^{2}{y}^{3}}$=$\frac{{c}^{2}{d}^{2}}{{c}^{2}{w}^{2}+{d}^{2}{z}^{2}}$=$\frac{abcd}{xyzw}$=$\frac{1}{k}$,
则$\frac{{a}^{2}{y}^{2}+{b}^{2}{x}^{2}}{{a}^{2}{b}^{2}}$=$\frac{{b}^{2}{z}^{2}+{c}^{2}{y}^{2}}{{b}^{2}{c}^{2}}$=$\frac{{c}^{2}{w}^{2}+{d}^{2}{z}^{2}}{{c}^{2}{d}^{2}}$=$\frac{xyzw}{abcd}$=k,
整理,得:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{z}^{2}}{{c}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{w}^{2}}{{d}^{2}}$+$\frac{{z}^{2}}{{c}^{2}}$=$\frac{xyzw}{abcd}$=k,
∴$\frac{{x}^{2}}{{a}^{2}}$=$\frac{{z}^{2}}{{c}^{2}}$、$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{w}^{2}}{{d}^{2}}$,$\frac{xyzw}{abcd}$=k,
设$\frac{{x}^{2}}{{a}^{2}}$=$\frac{{z}^{2}}{{c}^{2}}$=k1,$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{w}^{2}}{{d}^{2}}$=k2
由$\frac{xyzw}{abcd}$=k可得k=$\sqrt{{{k}_{1}}^{2}•{{k}_{2}}^{2}}$,
由$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{a}^{2}{y}^{2}+{b}^{2}{x}^{2}}{{a}^{2}{b}^{2}}$得k1+k2=k,
∴原式=2×$\frac{1}{{k}_{1}}$+2×$\frac{1}{{k}_{2}}$=$\frac{2({k}_{1}+{k}_{2})}{{k}_{1}{k}_{2}}$=2.

点评 本题主要考查分式的化简求值,熟练掌握分式的运算法则和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网