题目内容

4.如图,BD是△ABC的角平分线,DE⊥AB,DF⊥BC垂足分别为E、F.
(1)求证:BE=BF;
(2)若△ABC的面积为70,AB=16,DE=5,则BC=12.

分析 (1)由角平分线的对称性直接证明△DBE≌△DBF即可;
(2)先算出三角形ABD的面积,再得出三角形BCD的面积,高DF=DE=5,从而直接算出BC.

解答 (1)证明:∵DE⊥AB,DF⊥BC,
∴∠BED=∠BFD=90°,
∵BD是△ABC的角平分线,
∴∠EBD=∠FBD,
又∵BD=BD,
∴△DBE≌△DBF,
∴BE=BF;
(2)解:∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,
∴DF=DE=5,
∴${S}_{△ABD}=\frac{1}{2}AB•DE=40$,
∴${S}_{△BCD}=\frac{1}{2}BC•DF$=70-40=30,
∴BC=12.
故答案为12.

点评 本题主要考查了角平分线的性质、全等三角形的判定与性质、面积法求线段长度,难度中等.熟练掌握角平分线的性质是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网