题目内容


如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.

(1)求证:BC是⊙O的切线;

(2)已知∠B=30°,CD=4,求线段AB的长.

 


【考点】切线的判定;勾股定理.

【专题】证明题.

【分析】(1)连结OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;

(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=4,然后在Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=8

【解答】(1)证明:连结OD,如图,

∵∠BAC的平分线交BC于点D,

∴∠BAD=∠CAD,

∵OA=OD,

∴∠OAD=∠ODA,

∴∠ODA=∠CAD,

∴OD∥AC,

∵∠C=90°,

∴∠ODB=90°,

∴OD⊥BC,

∴BC是⊙O的切线;

(2)解:∵∠B=30°,

∴∠BAC=60°,

∴∠CAD=30°,

在Rt△ADC中,DC=4,

∴AC=DC=4

在Rt△ABC中,∠B=30°,

∴AB=2AC=8

【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网