题目内容

(11分)如图,正方形ABCD的边长为3,E,F 分别是AB,BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.

(1)求证:EF=FM;

(2)当AE=1时,求EF的长.

(1)详见解析;(2)EF=

【解析】

试题分析:(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;

(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.

试题解析:(1)证明:∵△DAE逆时针旋转90°得到△DCM,

∴∠FCM=∠FCD+∠DCM=180°,

∴F、C、M三点共线,

∴DE=DM,∠EDM=90°,

∴∠EDF+∠FDM=90°,

∵∠EDF=45°,

∴∠FDM=∠EDF=45°,

在△DEF和△DMF中,

∴△DEF≌△DMF(SAS),

∴EF=MF;

(2)设EF=MF=x,

∵AE=CM=1,且BC=3,

∴BM=BC+CM=3+1=4,

∴BF=BM﹣MF=BM﹣EF=4﹣x,

∵EB=AB﹣AE=3﹣1=2,

在Rt△EBF中,由勾股定理得EB2+BF2=EF2,

即22+(4﹣x)2=x2,

解得:x=

则EF=

考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.旋转的性质.

考点分析: 考点1:四边形 四边形:四边形的初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。主要考察内容:①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。突破方法:①掌握多边形,四边形的性质和判定方法。熟记各项公式。②注意利用四边形的性质进行有关四边形的证明。③注意开放性题目的解答,多种情况分析。 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网