题目内容

11. 如图,在正方形ABCD中,点E为BC的中点,CF=$\frac{1}{4}$CD,连接AE、AF、EF.设CF=a
(1)分别求线段AE、AF、EF的长(用含a的代数式表示);
(2)求证:△AEF为直角三角形.

分析 (1)由正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,由已知条件得出AD=DA=4a,BE=CE=2a,DF=3a,由勾股定理求出AE、AF、EF即可;
(2)求出AE2+EF2=AF2,根据勾股定理的逆定理即可得出结论.

解答 (1)解:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠B=∠C=∠D=90°,
∵点E为BC的中点,CF=$\frac{1}{4}$CD,CF=a,
∴AD=DA=4a,BE=CE=2a,DF=3a,
∴AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\sqrt{(4a)^{2}+(2a)^{2}}$=2$\sqrt{5}$a,
AF=$\sqrt{D{A}^{2}+D{F}^{2}}$=$\sqrt{(4a)^{2}+(3a)^{2}}$=5a,
EF=$\sqrt{C{E}^{2}+C{F}^{2}}$=$\sqrt{(2a)^{2}+{a}^{2}}$=$\sqrt{5}$a;
(2)证明:∵AE2+EF2=(2$\sqrt{5}$a)2+($\sqrt{5}$a)2=25a2,AF2=(5a)2=25a2
∴AE2+EF2=AF2
∴∠AEF=90°,
即△AEF为直角三角形.

点评 本题考查了正方形的性质、勾股定理、勾股定理的逆定理;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网